If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+x^2=169
We move all terms to the left:
6x+x^2-(169)=0
a = 1; b = 6; c = -169;
Δ = b2-4ac
Δ = 62-4·1·(-169)
Δ = 712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{712}=\sqrt{4*178}=\sqrt{4}*\sqrt{178}=2\sqrt{178}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{178}}{2*1}=\frac{-6-2\sqrt{178}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{178}}{2*1}=\frac{-6+2\sqrt{178}}{2} $
| 1/28=x/100 | | 6x^2+x=169 | | 13c=169 | | 5x+-4=20 | | 5x+-4=2 | | 55=3.14/4(0.021)x(0.021)x2x1000) | | 0.125x=-2 | | -7+d3=0 | | 4x+3.1=12.9 | | 12(3b-6)-3b=-9×-1 | | g/6-7=2 | | 2(5x-3)=2 | | 40×(5x)=12(250-x) | | 9x-36=3x-6 | | 8c=-4c-36 | | 6x-9=13x+4 | | -26+3x=-52+7x | | 33-5x=-9-8x | | 2.5x=4.3 | | 2-(3-x)=4-(-5-x) | | 40-5x=7 | | x+1+3x=29.x= | | 10x-16=5x+9 | | X^2+50x=180 | | x/3-2=x-3/6 | | 5(x+8)+1=-9 | | Y=5040+0.59Y+30r | | 9x-7=11x+20 | | Y=5040+0.59+30r | | (x-1/3)-(1/3)-(1/3)=180 | | x/27=180 | | 7×-12=4x |